4.6 Article

Lippmann-Schwinger solvers for the explicit jump discretization for thermal computational homogenization problems

出版社

WILEY
DOI: 10.1002/nme.6030

关键词

conjugate gradient method; computational homogenization; FFT; finite difference methods; spectral method; thermal conduction

资金

  1. German Research Foundation (Deutsche Forschungsgemeinschaft) [GRK 2078]

向作者/读者索取更多资源

We present a variational formulation and a Lippmann-Schwinger equation for the explicit jump discretization of thermal computational homogenization problems, together with fast and memory-efficient matrix-free solvers based on the fast Fourier transform (FFT). Wiegmann and Zemitis introduced the explicit jump discretization for volumetric image-based computational homogenization of thermal conduction. In contrast to Fourier and finite difference-based discretization methods classically used in FFT-based homogenization, the explicit jump discretization is devoid of ringing and checkerboarding artifacts. Originally, the explicit jump discretization was formulated as the discrete equivalent of a boundary integral equation for the jump in the temperature gradient. The resulting equations are not symmetric positive definite, and thus solved by the BiCGSTAB method. Still, the numerical scheme exhibits stable convergence behavior, also in the presence of pores. In this work, we exploit a reformulation of the explicit jump system in terms of harmonically averaged conductivities. The resulting system is intrinsically symmetric positive definite and admits a Lippmann-Schwinger formulation. A seamless integration into existing FFT-based software packages is ensured. We demonstrate our improvements by numerical experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据