4.7 Article

Hollow Co3O4 Nanosphere Surrounded by N-Doped Graphitic Carbon Filled within Multilayer-Sandwiched Graphene Network: A High-Performance Anode for Lithium Storage

期刊

INORGANIC CHEMISTRY
卷 58, 期 5, 页码 3416-3424

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.8b03533

关键词

-

资金

  1. Natural Science Foundation of Tianjin City [17JCZDJC36800]

向作者/读者索取更多资源

We prepared a multilayer-sandwiched Co3O4/NGC/rGO composite by introducing in situ electrostatic self-assembly method with a subsequent thermal annealing induced Kirkendall effect. In the composite, the hollow Co3O4 nanospheres surrounded by N-doped graphitic carbon (NGC) layer are tightly sandwiched between the reduced graphene oxide (rGO) layers. The layer-by-layer multilayer-sandwiched structure and strong electrostatic interaction bring the space confinement effect and close electrical contact between different components, which greatly strengthen the durability of the electrode structure and electron/ion transport kinetics. Detailed characterization based on electrochemical impedance spectra (EIS) and cyclic voltammograms (CVs) tests confirms that the Co3O4/NGC/rGO electrode possesses accelerated electron/ion-transfer kinetics and enhanced surface-controlled capacitive behaviors. The discharging profile and its differential capacity curve further validate the existence of interfacial storage lithium in the composite, contributing to high reversible capacity. Consequently, benefiting from the synergistic effects of the multilevel controls in component and structure aspects, the Co3O4/NGC/rGO composite displays a superior reversible capacity (930.8 mA h g(-1) at 0.5 A g(-1)), desired rate performance (584 mA h g(-1) at 10 A g(-1)), as well as stable cycling lifetime of over 300 loops with almost no capacity fading even without any additional conductive additives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据