4.7 Article

Hydrogen Evolution in [NiFe] Hydrogenases: A Case of Heterolytic Approach between Proton and Hydride

期刊

INORGANIC CHEMISTRY
卷 58, 期 5, 页码 2979-2986

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.8b02812

关键词

-

资金

  1. Australian Research Council (ARC), King Abdullah University of Science and Technology and High-level Talents Project of Dongguan University of Technology [KCY-KYQD2017017]
  2. Guangdong Innovation Research Team for Higher Education [2017KCXTD030]
  3. Australian Government
  4. KAUST Supercomputing Laboratory

向作者/读者索取更多资源

The mechanism for Hydrogen Evolution Reaction (HER) in [NiFe] hydrogenase enzymes distinguishes them from inorganic catalysts. The first H+/e(-) pair injected to the active site of the hydrogenases transforms into hydride, while the second H+/e(-) pair injection leads to the formation of the H-/H+ pair both binding to the active site. The two opposite charged hydrogens heterolytically approach each other in order to form dihydrogen (H-2), which is enhanced by the Coulomb force. Two previously proposed reaction routes for this process have been examined by Conceptual Density Functional Theory (DFT) in this work. One presents better agreement with experimental spectra, while the other is thermodynamically more favorable. Both paths suggest that the approach and the charge transfer between the proton and hydride are motivated by the stabilization of the electronic activity and the electrophilicity of Ni. After the heterolytic approach of the proton and hydride moieties, the two hydrogen atoms attach to the Ni ion and combine homolytically.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据