4.7 Article

Graph-Based Blind Image Deblurring From a Single Photograph

期刊

IEEE TRANSACTIONS ON IMAGE PROCESSING
卷 28, 期 3, 页码 1404-1418

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIP.2018.2874290

关键词

Blind image deblurring; graph signal processing; non-convex optimization

资金

  1. Major State Basic Research Development Program of China 973 Program [2015CB351804]
  2. National Science Foundation of China [61672193, 61502122]

向作者/读者索取更多资源

Blind image deblurring, i.e., deblurring without knowledge of the blur kernel, is a highly ill-posed problem. The problem can be solved in two parts: 1) estimate a blur kernel from the blurry image, and 2) given an estimated blur kernel, de-convolve the blurry input to restore the target image. In this paper, we propose a graph-based blind image deblurring algorithm by interpreting an image patch as a signal on a weighted graph. Specifically, we first argue that a skeleton image-a proxy that retains the strong gradients of the target but smooths out the details-can be used to accurately estimate the blur kernel and has a unique bi-modal edge weight distribution. Then, we design a reweighted graph total variation (RGTV) prior that can efficiently promote a bimodal edge weight distribution given a blurry patch. Further, to analyze RGTV in the graph frequency domain, we introduce a new weight function to represent RGTV as a graph l(1)-Laplacian regularizer. This leads to a graph spectral filtering interpretation of the prior with desirable properties, including robustness to noise and blur, strong piecewise smooth filtering, and sharpness promotion. Minimizing a blind image deblurring objective with RGTV results in a non-convex non-differentiable optimization problem. Leveraging the new graph spectral interpretation for RGTV, we design an efficient algorithm that solves for the skeleton image and the blur kernel alternately. Specifically for Gaussian blur, we propose a further speedup strategy for blind Gaussian deblurring using accelerated graph spectral filtering. Finally, with the computed blur kernel, recent non-blind image deblurring algorithms can be applied to restore the target image. Experimental results demonstrate that our algorithm successfully restores latent sharp images and outperforms the state-of-the-art methods quantitatively and qualitatively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据