4.6 Article

Control of Photovoltaic Systems for Enhanced Short-Term Voltage Stability and Recovery

期刊

IEEE TRANSACTIONS ON ENERGY CONVERSION
卷 34, 期 1, 页码 243-254

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEC.2018.2875303

关键词

Fault-induced delayed voltage recovery; dynamic reactive power support; dynamic grid support; fault ride-through; induction motors; large-scale photovoltaic plants

资金

  1. German Federal Ministry for Economic Affairs and Energy [0325776J]

向作者/读者索取更多资源

This paper investigates the impact of: 1) the Low Voltage Ride-Through (LVRT) and Dynamic Voltage Support (DVS) capability; 2) the active current recovery rate; 3) the local voltage control; and 4) the plant-level voltage control of large-scale PhotoVoltaic (PV) systems on Short-Term (ST) voltage stability and Fault-Induced Delayed Voltage Recovery (FIDVR). Moreover, the influence on transient and frequency stability is studied briefly. To evaluate FIDVR, a novelmetric, the so-called Voltage Recovery Index (VRI), is defined. The studies are performed with the WECC generic PV system model on an IEEE voltage stability test system, namely the Nordic test system. The results show that without LVRT capability the system is ST voltage and transient unstable. Only the LVRT and DVS capability help to avoid ST voltage and transient instability. Considering voltage and frequency dynamics, an active current recovery rate of 100%/s shows the best performance. To further enhance voltage dynamics, plant-level voltage control together with local coordinated reactive power/voltage control should be applied. Moreover, the VRI provides useful information about the FIDVR and helps to compare different ST voltage controls.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据