4.7 Article

Wintertime fCO2 Variability in the Subpolar North Atlantic Since 2004

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 46, 期 3, 页码 1580-1590

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018GL080554

关键词

-

资金

  1. ICOS-Norway (Norwegian Research Council) [245927]
  2. SNACS project part of the KLIMAFORSK program of the Norwegian Research Council [229752]

向作者/读者索取更多资源

Winter data of surface ocean temperature (SST), salinity (SSS) and CO2 fugacity (fCO(2)) collected on the VOS M/V Nuka Arctica in the subpolar North Atlantic between 2004 and 2017 are used to establish trends, drivers, and interannual variability. Over the period, waters cooled and freshened, and the fCO(2) increased at a rate similar to the atmospheric CO2 growth rate. When accounting for the freshening, the inferred increase in dissolved inorganic carbon (DIC) was found to be approximately twice that expected from atmospheric CO2 alone. This is attributed to the cooling. In the Irminger Sea, fCO(2) exhibited additional interannual variations driven by atmospheric forcing through winter mixing. As winter fCO(2) in the region is close to the atmospheric, the subpolar North Atlantic has varied between being slightly supersaturated and slightly undersaturated over the investigated period. Plain Language Summary The global oceans take up roughly a quarter of carbon dioxide (CO2) from fossil fuels and industry per year. As the emissions of CO2 increase, the amount of CO2 taken up by the oceans should increase in proportion; however, the ability of the ocean to remove CO2 from the atmosphere varies on interannual to decadal time scales. Here we assess processes that drive short-term variability and long-term trends of the subpolar North Atlantic carbon sink based on observational data obtained during winters between 2004 and 2017. We find that the subpolar North Atlantic has indeed kept pace with rising emissions over the entire period of time, which was mainly attributed to solubility-driven uptake of CO2. Year-to-year changes of the surface ocean partial pressure of CO2 can be linked to the depth of the winter mixed layer as well as atmospheric forcing. In general, the North Atlantic has shifted between a small source and a small sink of atmospheric CO2 during wintertime. Our results underline the need to maintain long-term physical, chemical, and biological observations in order monitor the ocean CO2 sink and understand the processes driving variability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据