4.7 Article

New insight into the classification and evolution of glucose transporters in the Metazoa

期刊

FASEB JOURNAL
卷 33, 期 6, 页码 7519-7528

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.201802617R

关键词

GLUT; protein family; network; gene fusion; gene duplication

资金

  1. National Research Foundation of the Korean Ministry of Science and Information and Communications Technology (ICT) [2017M3C1B5019250, 2018R1A5A1025077]

向作者/读者索取更多资源

Because glucose is an essential energy source for living organisms, glucose transporters (GLUTs) are present in all species worldwide. Encoded by the solute carrier family 2 gene family, the GLUT proteins generally have 12 transmembrane helices (TMHs). In total, 14 GLUT proteins have been identified in humans (hGLUTs), and they are divided into 3 classes on the basis of their transport characteristics and sequence similarities. Herein, we report the use of protein sequence similarity networks (SSNs) to visualize the sequence trends of 4101 GLUT proteins across the Metazoa. The SSNs separated the metazoan proteins into 3 new classes that were different from the traditional classification system. In the new system, 9 of the 14 hGLUTs (hGLUT1-5, 7, 9, 11, and 14) were grouped into class I, 3 (hGLUT10, 12, and 13) were grouped into class II, and 2 (hGLUT6 and 8) were grouped into class III, as also supported by the phylogenetic tree. Multiple sequence alignments further showed that the conserved residues in each class were different. Furthermore, the hGLUTs in each class showed unique evolutionary characteristics, with similar nonsynonymous-to-synonymous divergence ratios and similar regions under conservative selection pressure. Of note, GLUTs with 3, 6, 18, 24, and 36 TMHs were identified among the metazoan genomes, and 1 Chinese hamster protein with 6 TMHs showed GLUT activity. In summary, this large-scale sequence analysis provided new insights into the classification and evolution of GLUTs and further showed that gene duplication and fusion could have been important drivers during the evolution of these transporter molecules.-Jia, B., Yuan, D. P., Lan, W. J., Xuan, Y. H., Jeon, C. O. New insight into the classification and evolution of glucose transporters in the Metazoa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据