4.7 Article

Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways

期刊

EXPERIMENTAL NEUROLOGY
卷 313, 期 -, 页码 60-78

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2018.12.005

关键词

MCAO; Treadmill exercise; Caveolin-1/VEGF; Dendrite; Dendritic spine; Synaptic plasticity

资金

  1. Science Technology Bureau of Wenzhou [2017Y0961]

向作者/读者索取更多资源

Dendritic and synaptic plasticity in the penumbra are important processes and are considered to be therapeutic targets of ischemic stroke. Treadmill exercise is known to be a beneficial treatment following stroke. However, its effects and potential mechanism in promoting dendritic and synaptic plasticity remain unknown. We have previously demonstrated that the caveolin-1/VEGF signaling pathway plays a positive role in angiogenesis and neurogenesis. Here, we further investigated the effects of treadmill exercise on promoting dendritic and synaptic plasticity in the penumbra and whether they involve the caveolin-1/VEGF signaling pathway. A middle cerebral artery occlusion (MCAO) animal model was established, and rats were randomly divided into eleven groups. At 2 days after MCAO, rats were subjected to treadmill exercise for 7 or 28 days. Daidzein (a specific inhibitor of caveolin-1, 0.4 mg/kg) was used to confirm the effect of caveolin-1/VEGF signaling on exercise-mediated dendritic and synaptic plasticity. Neurobehavioral performance, tissue morphology and infarct volumes were detected by Modified Neurology Severity Score (mNSS), Hematoxylin-eosin (HE), and Nissl staining, while neural plasticity and its molecular mechanism were examined by Golgi-Cox staining, transmission electron microscopy, western blot analysis and immunofluorescence. We found that treadmill exercise promoted dendritic plasticity in the penumbra, consistent with the significant increase in caveolin-1 and VEGF expression; improved neurological recovery; and reduced infarct volume. In contrast to the positive effects of the treadmill, a caveolin-1 inhibitor abrogated the dendritic and synaptic plasticity. Furthermore, we observed that treadmill exercise-induced improved dendritic and synaptic plasticity were significantly inhibited by the caveolin-1 inhibitor, consistent with the lower expression of caveolin-1 and VEGF, as well as the worse neurobehavioral state. The findings indicate that treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据