4.3 Article

Predation decreases cohort foraging activity and growth, yet increases individual size variation in prey

期刊

EVOLUTIONARY ECOLOGY
卷 33, 期 2, 页码 233-242

出版社

SPRINGER
DOI: 10.1007/s10682-019-09977-0

关键词

Inducible defense; Inter-individual size difference; Gape-constrained predators; Non-lethal predator effects; Tadpole

资金

  1. Ecological Society of Japan, Chubu division

向作者/读者索取更多资源

There is increasing evidence that size variability within a cohort can have important consequences on community ecology and evolution. It is commonly assumed that the threat of predation can influence cohort size variability by homogenizing foraging behavior among members. We combined predictions of growth-defense models with those from models of genesis of size variation to test the non-lethal effects of size-selective newt and gape-unconstrained aeshnid dragonfly larva predators on the size structure of Rhacophorus arboreus tadpoles in a controlled laboratory experiment. We hypothesized that the predators would induce differential growth and behavioral responses in the tadpoles, and would decrease cohort size variation. The tadpoles reduced activity levels in the presence of the predators, but the responses were generally stronger in the presence of dragonfly larvae. Growth costs were commensurate with the levels of behavioral defense investments in the tadpoles. Despite strong reductions in activity levels and growth, cohort size variation increased in the presence of predators, contrasting current models on relationship between foraging rates, growth, and cohort size variation in prey. The underlying mechanisms are unclear, but it is possible that reduced rates of movement limited access to food for some cohort members or that predation risk enhanced the expression of behavioral variation among individuals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据