4.6 Article

Particle size analysis of airborne wood dust produced from sawing thermally modified wood

期刊

EUROPEAN JOURNAL OF WOOD AND WOOD PRODUCTS
卷 77, 期 2, 页码 211-218

出版社

SPRINGER
DOI: 10.1007/s00107-019-01385-z

关键词

-

资金

  1. US Department of Agriculture, Wood Education and Resource Center [15-DG-11420004-082]

向作者/读者索取更多资源

Thermal modification imparts desirable properties in wood, including increased dimensional stability and greater resistance to fungal decay. While there is a substantial amount of performance data for thermally modified wood, there is little data available regarding the airborne particle size distribution of dust produced when processing thermally modified wood using standard machining equipment. Therefore, utilizing a Micro-Orifice Uniform Deposit Impactor, this research analyzed the size distribution of airborne particles produced when processing 170 degrees C thermally modified yellow poplar, red maple, white ash, aspen, and balsam fir on an industrial table saw. Ultimately, the aim of this research was to provide preliminary data that may assist wood products industry manufacturers and environmental health and safety officials in identifying potential hazards of airborne thermally modified wood dust. The study revealed slight differences in airborne particulate matter (PM) by wood species. The unmodified yellow poplar, red maple, and white ash all had relatively similar amounts of PM10 (similar to 29%), while balsam fir (similar to 10%) had the least amount. The unmodified yellow poplar also had the highest amount of PM2.5 and PM1, 14% and 10%, respectively, while the balsam fir had the least amount of PM2.5 and PM1, 2.00% and 1.45%, respectively. Thermally modified yellow poplar had the highest PM10, PM2.5, and PM1. Statistical analysis revealed that none of the five wood species had a significant difference (p<0.05) in particle size distribution between unmodified and thermally modified forms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据