4.5 Article

Disruption of KCNQ1 prevents methylation of the ICR2 and supports the hypothesis that its transcription is necessary for imprint establishment

期刊

EUROPEAN JOURNAL OF HUMAN GENETICS
卷 27, 期 6, 页码 903-908

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41431-019-0365-x

关键词

-

资金

  1. Bundesministerium fur Bildung und Forschung (BMBF) [01GM1513A]

向作者/读者索取更多资源

Beckwith-Wiedemann syndrome (BWS; OMIM #130650) is an imprinting disorder caused by genetic or epigenetic alterations of one or both imprinting control regions on chromosome 11p15.5. Hypomethylation of the centromeric imprinting control region (KCNQ1OT1:TSS-DMR, ICR2) is the most common molecular cause of BWS and is present in about half of the cases. Based on a BWS family with a maternal deletion of the 5' part of KCNQ1 we have recently hypothesised that transcription of KCNQ1 is a prerequisite for the establishment of methylation at the KCNQ1OT1:TSS-DMR in the oocyte. Further evidence for this hypothesis came from a mouse model where methylation failed to be established when a poly(A) truncation cassette was inserted into this locus to prevent transcription through the DMR. Here we report on a family where a balanced translocation disrupts the KCNQ1 gene in intron 9. Maternal inheritance of this translocation is associated with hypomethylation of the KCNQ1OT1:TSS-DMR and BWS. This finding strongly supports our previous hypothesis that transcription of KCNQ1 is required for establishing the maternal methylation imprint at the KCNQ1OT1:TSS-DMR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据