4.5 Article

Isotopic Variation of Macroinvertebrates and Their Sources of Organic Matter Along an Estuarine Gradient

期刊

ESTUARIES AND COASTS
卷 43, 期 3, 页码 496-511

出版社

SPRINGER
DOI: 10.1007/s12237-019-00543-z

关键词

Trophic niche; Macrobenthos; Low-turbidity; Coastal embayment; Stable isotopes; Food web

向作者/读者索取更多资源

Spatiotemporal patterns in the basal resources fueling the macrobenthic food web of a temperate coastal embayment subject to a low-turbidity riverine discharge (Gwangyang Bay, Korea) were evaluated using carbon and nitrogen stable isotopes. This study examined trophic links of macrobenthic food web with primary production in diverse wetland habitats along the riverine-estuarine-coastal marine continuum. delta C-13 and delta N-15 values of macrobenthic assemblages collected along the salinity gradient of the main channel and their putative sources of organic matter (i.e., riverine particulate organic matter (RPOM), Phragmites australis, microphytobenthos (MPB), phytoplankton, and Zostera marina) were determined. A permutational analysis of variance test showed seasonal uniformity in the isotopic niches of the macrobenthic community within different channel locations. In contrast, isotopic nestedness calculated for the microbenthic community emphasized clearly different trends in its isotopic niches among locations. The delta C-13 values of phytoplankton, suspended and sedimentary organic matter, and macrobenthic community displayed a consistently positive relationship with salinity, characterizing an important contribution of local phytoplankton to the nutrition of macrobenthic community. The isotope mixing model revealed that Phragmites-derived organic matter contributed considerably to the nutrition in the estuarine channel, whereas MPB and Zostera provided trophic subsidies to the deep bay and offshore communities. The nutritional importance of RPOM was minimal at all sites. Overall results suggest that phytoplankton production is a major nutritional contributor to the macrobenthic community in the main channel and that trapping POM originated from neighboring wetlands leads to a longitudinal isotopic niche shift in the macrobenthic community.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据