4.8 Article

Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 53, 期 7, 页码 3748-3756

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b06709

关键词

-

资金

  1. U.S. National Science Foundation [1605290]
  2. Div Of Chem, Bioeng, Env, & Transp Sys
  3. Directorate For Engineering [1605290] Funding Source: National Science Foundation

向作者/读者索取更多资源

Capacitive deionization (CDI) technologies couple electronic and ionic charge storage, enabling improved thermodynamic efficiency of brackish desalination by recovering energy released during discharge. However, insight into CDI has been limited by discrete experimental observations at low desalination depths (Delta c, typically reducing influent salinity by 10 mM or less). In this study, the performance and sensitivity of three common CDI configurations [standard CDI, membrane CDI (MCDI), and flowable electrode CDI (FCDI)] were evaluated across the operational and material design landscape by varying eight common input parameters (electrode thickness, influent concentration, current density, electrode flow rate, specific capacitance, contact resistance, porosity, and fixed charge). All combinations of designs were evaluated for two influent concentrations with a calibrated and validated one-dimensional (1-D) porous electrode model. Sensitivity analyses were carried out via Monte Carlo and Morris methods, focusing on six performance metrics. Across all performance metrics, high sensitivity was observed to input parameters which impact cycle length (current, resistance, and capacitance). Simulations demonstrated the importance of maintaining both charge and round-trip efficiencies, which limit the performance of CDI and FCDI, respectively. Accounting for energy recovery, only MCDI was capable of operating at thermodynamic efficiencies similar to reverse osmosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据