4.7 Article

Enhanced distribution of humic acid-modified nanoscale magnesia for in situ reactive zone removal of Cd from simulated groundwater

期刊

ENVIRONMENTAL POLLUTION
卷 245, 期 -, 页码 9-19

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2018.10.105

关键词

Nanoparticles; Humic acid; Mobility; Injection-based in situ remediation; Transport

资金

  1. National Natural Science Foundation of China [41571460, 41771354]
  2. CAS-TWAS President's Fellowship for PhD studies in China

向作者/读者索取更多资源

Efficient injection and distribution of nanoparticles in porous media are considered a formidable technical hurdle for injection-based in situ remediation. One approach to enhance the mobility of nano particles in an aquifer is to use surface modifiers. In this study, nanoscale magnesia (NMgOs), an innovative and effective remedial material for cadmium (Cd) removal from groundwater, was modified with the negatively charged and eco-friendly humic acid to enhance its mobility in aquifers. A two-dimensional reactor (60 x 50 x 10 cm), with 2 injection wells and 30 monitoring wells was designed, constructed, and sand-packed in the laboratory to simulate a saturated aquifer. The simulated aquifer was pre-contaminated with Cd to simulate a plume in groundwater. The distribution of injected unmodified NMgOs and humic acid-modified NMgOs slurry were evaluated in the reactor. The radius of influence (ROI) of humic acid-modified NMgOs was estimated to be approximately 5 cm based on visual observation, while no ROI was apparent for the unmodified NMgOs because of their aggregation at the bottom of the injection wells. The concentrations of Cd and magnesium (Mg) were monitored in all 30 monitoring wells at different time intervals to evaluate the effectiveness of Cd removal. The breakthrough curve analysis revealed that humic acid enhances the transport of NMgOs in the saturated porous media. Furthermore, the results of scanning electron microscopy-energy dispersive x-ray (SEM -EDX) characterization of silica sand before and after injection of NMgOs verified the presence of 5.78% of Mg from humic acid-modified NMgOs and 0.19% from unmodified NMgOs at 35 cm downgradient of the injection wells, which are consistent with the conclusion drawn from the breakthrough curves. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据