4.7 Article

Impact of disinfectant on bacterial antibiotic resistance transfer between biofilm and tap water in a simulated distribution network

期刊

ENVIRONMENTAL POLLUTION
卷 246, 期 -, 页码 131-140

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2018.11.077

关键词

Bacterial antibiotic resistance; Biofilm; Tap water; Simulated water distribution system; Disinfection

资金

  1. National Key R&D Program of China [2016YF0700200]
  2. Major Science and Technology Program for Water Pollution Control and Treatment [2018ZX07110-008]

向作者/读者索取更多资源

Bacterial antibiotic resistance (BAR) is profoundly important to human health, but the environmental reservoirs of resistance determinants are poorly understood. BAR of biofilm and tap water were analyzed by using a water distribution simulator where different doses of chlorine and chloramine were used in this study. The results revealed that the disinfectants (>= 2 mg/L) suppressed antibiotic resistant bacteria (ARB) in tap water and biofilms, while disinfected water and biofilms had a high relative abundance of ARB. The difference of ARB concentration and ARB percentage between the samples obtained from a disinfected pipeline and a non-disinfected pipeline became smaller over time. Because the water supply system is a unidirectional process, it is unclear how planktonic bacteria in water transfer BAR over time, although biofilm is suspected to play a role in this process. Compared with the biofilm samples without disinfectant, the disinfected biofilm had lower ICC and HPC/ICC percentage, lower AOC and AOC/TOC percentage, indicating that the disinfectant inhibited the bacteria growth in biofilm, and the disinfected biofilm had high proportion of non-culturable bacteria and low biodegradability, which affected BAR in biofilms. High throughput sequencing showed that in biofilms, the relative abundance of genera (uncultured_f_Rhodocyclaceae, Brevundimonas, and Brevibacillus in chlorinated systems, and Brevundimonas, Brevibacillus in chloraminated systems) with multiple antibiotic resistance and high abundance (up to 78.5%), were positively associated with disinfectant concentration and ARB percentage. The major prevalent genera in biofilms were also detected in tap water, suggesting that biofilm growth or biofilm detachment caused by external environmental factors will allow the movement of biofilm clusters with higher ARB concentration and percentage into bulk water, thereby increasing the antibiotic resistance of bacteria in tap water. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据