4.5 Article

Long-term trends in ambient fine particulate matter from 1980 to 2016 in United Arab Emirates

期刊

出版社

SPRINGER
DOI: 10.1007/s10661-019-7259-9

关键词

PM2; 5; Aerosol; Emissions; UAE

资金

  1. Research Office, Zayed University in United Arab Emirates [R 17081]

向作者/读者索取更多资源

This paper presents the most comprehensive datasets of ambient fine particulate matter (PM2.5) for the UAE from 1980 to 2016. The long-term distributions of PM2.5 showed the annual average PM2.5 concentrations constantly exceeded the EPA and WHO guidelines. They varied from 77 to 49g/m(3) with an overall average of 61.25g/m(3). While the inter-annual variability in PM2.5 concentrations showed relatively a cyclic pattern, with successive ups and downs, it broadly exhibited an increasing trend, particularly, over the last 14years. PM2.5 concentrations displayed a strong seasonal pattern, with greatest values observed during warm summer season, a period of high demand of electricity and dust events. The lowest values found in autumn are attributable to reduced demand of energy. Decreased atmospheric temperatures and high relative humidity coinciding with this period are likely to reduce the secondary formation of PM2.5. The spatial changes in PM2.5 concentrations exhibited gradual downward trends to the north and northeast directions. Airborne PM2.5 is prevalent in the southern and western regions, where the majority of oil and gas fields are located. PM2.5/PM10 ratio indicated that ambient aerosols are principally associated with anthropogenic sources. Peaks in PM2.5/CO ratio were frequently observed during June, July, and August, although few were concurrent with March. This indicates that secondary formation plays an important role in PM2.5 levels measured in these months, especially as the photochemical activities become relatively strong in these periods. The lowest PM2.5/CO ratios were found during September, October, and November (autumn) suggesting a considerable contribution of primary combustion emissions, especially vehicular emissions, to PM2.5 concentration. PM2.5 concentrations are positively correlated with sulfate levels. In addition to sea and dust aerosols, sulfate concentration in the coastal region is also related to fossil fuel burning from power plants, oil and gas fields, and oil industries. The population-weighted average of PM2.5 in UAE was 63.9g/m(3), which is more than three times greater than the global population-weighted mean of 20g/m(3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据