4.7 Article

Prediction of ultimate bearing capacity through various novel evolutionary and neural network models

期刊

ENGINEERING WITH COMPUTERS
卷 36, 期 2, 页码 671-687

出版社

SPRINGER
DOI: 10.1007/s00366-019-00723-2

关键词

Evolutionary methods; PSO-ANN; GA-ANN; Optimization; Bearing capacity

向作者/读者索取更多资源

In the current study, various evolutionary artificial intelligence and machine learning models namely, optimized artificial neural network (ANN), genetic algorithm optimized with ANN (GA-ANN) and particle swarm optimization optimized with ANN (PSO-ANN), differential evolution algorithm (DEA), adaptive neuro-fuzzy inference system (ANFIS), general regression neural network (GRNN), and feedforward neural network (FFNN) were optimized and applied to predict the ultimate bearing capacity (F-ult) of shallow footing on two-layered soil condition. Due to a lot of input variables such as (upper layer thickness/foundation width (h/B) ratio, footing width (B), top and bottom soil layer properties) finding a reliable solution for such a complex engineering problem is difficult. Most of the available solutions are based on very limited experimental works. To assess the capability of proposed methods a new ranking system called CER (color intensity rating) based on their result of above indices was developed. As a result, although all provided methods, after being optimized, could successfully predict the bearing capacity of shallow footing in the two-layer subsoil and PSO-ANN could perform better compared to other techniques. Based on RMSE, R-2 and VAF, values of (0.01, 0.99, and 99.90) and (0.01, 0.99, and 99.90) were found, respectively, for the training and testing datasets of PSO-ANN model. In this regard, the accuracy of other hybrid algorithm of GA-ANN model with RMSE, R-2 and VAF of (0.05, 0.99, and 97.80) and (0.06, 0.99, and 97.57), respectively, for the training and testing datasets was slightly lower than the PSO-ANN model. This shows the superiority of the PSO-ANN model in the prediction of a highly complex real-world engineering problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据