4.7 Article

A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy

期刊

ENERGY
卷 170, 期 -, 页码 1249-1260

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2019.01.004

关键词

Energy modelling; Input-output analysis; Electrification pathways; Cooking devices; Integrated assessment models; Heat-electricity integration

向作者/读者索取更多资源

To support the ongoing transition towards smart and decarbonised energy systems, energy models need to expand their scope and predictive capabilities. To this end, this study proposes a multi-layer modelling methodology that soft-links (i) a stochastic bottom-up load curves estimation model, (ii) a technology rich energy system optimisation model (Calliope) and (iii) a Multi-Regional Input-Output model (Exiobase v.3), and applies it to investigate the economic and environmental consequences entailed by a massive replacement of traditional gas-fired kitchens with induction kitchens within the Italian residential sector. Two scenarios are considered for the analysis: (i) business as usual (BAU, 2015 energy system configuration), and (ii) national energy strategy (SEN, configuration prospected in 2030). The results show how the intervention produces positive net effects on the primary energy balance of the energy sector only when sustained by adequate shares of renewables, as in the SEN (-1.5 TWh.y(-1)); otherwise, increased operation of fossil-fuel plants offsets gas savings (BAU, +2 TWh.y(-1)). Nonetheless, feedbacks on other productive sectors entail additional energy consumption and emissions, thus counterpoising positive effects obtained within the energy sector even in the SEN scenario. Still, higher renewables penetration reduces overall additional emissions from 2.07 Mton.y(-1) for BAU to 0.88 Mton.y(-1) for the SEN. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据