4.7 Article

Design and optimization of a novel system for trigeneration

期刊

ENERGY
卷 168, 期 -, 页码 247-260

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2018.11.086

关键词

Subcooled CAES; Solar-powered absorption chiller; Wind farm; Trigeneration; Non-linear programming

向作者/读者索取更多资源

Subcooled compressed air energy storage (SCAES) is a system cogenerating heat, cooling, and power at a high coefficient of performance. In this study, hybridization of a SCAES system with a large-scale solar powered absorption chiller (SPAC) is proposed. The hybrid system sustainably provides cooling and power at high efficiency. The combined SPAC-SCAES system is appropriate for locations with large cooling demand and grid-connected renewable power plants. Employing this system, the renewable power plant may efficiently operate in the power market, maximizing the financial benefits by storing its surplus power and reclaiming the stored energy for balancing the demand and the production. In addition, a large amount of cold is produced, increasing the profitability of the system. This combined system is designed and simulated for a typical wind farm plus an absorption chiller of a hospital. Nonlinear programming (NLP) is used to optimize the operation strategy of the SCAES and based on the given results; the components of the system are sized. The results show that by the combined system a massive amount of balancing power can be produced for the grid, a reliable integration between the cold and electricity sectors is made, and the levelized cost of energy (LCOE) decreases remarkably. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据