4.5 Article

A Dynamic Adam Based Deep Neural Network for Fault Diagnosis of Oil-Immersed Power Transformers

期刊

ENERGIES
卷 12, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/en12060995

关键词

power transformer; fault diagnosis; dissolved gas analysis; deep neural network; Dynamic Adam; dropout

向作者/读者索取更多资源

This paper presents a Dynamic Adam and dropout based deep neural network (DADDNN) for fault diagnosis of oil-immersed power transformers. To solve the problem of incomplete extraction of hidden information with data driven, the gradient first-order moment estimate and second-order moment estimate are used to calculate the different learning rates for all parameters with stable gradient scaling. Meanwhile, the learning rate is dynamically attenuated according to the optimal interval. To prevent over-fitted, we exploit dropout technique to randomly reset some neurons and strengthen the information exchange between indirectly-linked neurons. Our proposed approach was utilized on four datasets to learn the faults diagnosis of oil-immersed power transformers. Besides, four benchmark cases in other fields were also utilized to illustrate its scalability. The simulation results show that the average diagnosis accuracies on the four datasets of our proposed method were 37.9%, 25.5%, 14.6%, 18.9%, and 11.2%, higher than international electro technical commission (IEC), Duval Triangle, stacked autoencoders (SAE), deep belief networks (DBN), and grid search support vector machines (GSSVM), respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据