4.5 Article

Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00092.2016

关键词

endothelial cells; nitric oxide; protein kinases

资金

  1. National Heart, Lung, and Blood Institute [HL60917, HL115008]
  2. National Center for Advancing Translational Sciences [UL1TR000439]

向作者/读者索取更多资源

The impairment of vasodilator nitric oxide (NO) production is well accepted as a typical marker of endothelial dysfunction in vascular diseases, including in the pathophysiology of pulmonary arterial hypertension (PAH), but the molecular mechanisms accounting for loss of NO production are unknown. We hypothesized that low NO production by pulmonary arterial endothelial cells in PAH is due to inactivation of NO synthase (eNOS) by aberrant phosphorylation of the protein. To test the hypothesis, we evaluated eNOS levels, dimerization, and phosphorylation in the vascular endothelial cells and lungs of patients with PAH compared with controls. In mechanistic studies, eNOS activity in endothelial cells in PAH lungs was found to be inhibited due to phosphorylation at T495. Evidence pointed to greater phosphorylation/activation of protein kinase C (PKC) alpha and its greater association with eNOS as the source of greater phosphorylation at T495. The presence of greater amounts of pT495-eNOS in plexiform lesions in lungs of patients with PAH confirmed the pathobiological mechanism in vivo. Transfection of the activating mutation of eNOS (T495A/S1177D) restored NO production in PAH cells. Pharmacological blockade of PKC activity by beta-blocker also restored NO formation by PAH cells, identifying one mechanism by which beta-blockers may benefit PAH and cardiovascular diseases through recovery of endothelial functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据