4.5 Article

TLR3 activation increases chemokine expression in human fetal airway smooth muscle cells

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00151.2015

关键词

airway; development; asthma; inflammation; chemokine; virus; Toll-like receptor

资金

  1. National Heart, Lung, and Blood Institute [T32 HL-105355, F32 HL-123075, R01 HL-056470]
  2. Mayo Clinic Center for Biomedical Discovery
  3. Center for Clinical and Translational Sciences
  4. Children's Research Center
  5. Department of Obstetrics and Gynecology of Mayo Clinic, Rochester
  6. Department of Obstetrics and Anesthesiology of Mayo Clinic, Rochester

向作者/读者索取更多资源

Viral infections, such as respiratory syncytial virus and rhinovirus, adversely affect neonatal and pediatric populations, resulting in significant lung morbidity, including acute asthma exacerbation. Studies in adults have demonstrated that human airway smooth muscle (ASM) cells modulate inflammation through their ability to secrete inflammatory cytokines and chemokines. The role of ASM in the developing airway during infection remains undefined. In our study, we used human fetal ASM cells as an in vitro model to examine the effect of Toll-like receptor (TLR) agonists on chemokine secretion. We found that fetal ASM express multiple TLRs, including TLR3 and TLR4, which are implicated in the pathogenesis of respiratory syncytial virus and rhinovirus infection. Cells were treated with TLR agonists, polyinosinic-polycytidylic acid [poly(I:C)] (TLR3 agonist), lipopolysaccharide (TLR4 agonist), or R848 (TLR7/8 agonist), and IL-8 and chemokine (C-C motif) ligand 5 (CCL5) secretion were evaluated. Interestingly, poly(I:C), but neither lipopolysaccharide nor R848, increased IL-8 and chemokine (C-C motif) ligand 5 secretion. Examination of signaling pathways suggested that the poly(I:C) effects in fetal ASM involve TLR and ERK signaling, in addition to another major inflammatory pathway, NF-kappa B. Moreover, there are variations between fetal and adult ASM with respect to poly(I:C) effects on signaling pathways. Pharmacological inhibition suggested that ERK pathways mediate poly(I:C) effects. Overall, our data show that poly(I:C) initiates activation of proinflammatory pathways in developing ASM, which may contribute to immune responses to infection and exacerbation of asthma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据