4.8 Article

Reward Inhibits Paraventricular CRH Neurons to Relieve Stress

期刊

CURRENT BIOLOGY
卷 29, 期 7, 页码 1243-+

出版社

CELL PRESS
DOI: 10.1016/j.cub.2019.02.048

关键词

-

资金

  1. National Natural Science Foundation of China [31671086, 61890951, 61890950, 31700909]
  2. Shanghai Pujiang Talent Award [2018X0302-101-01]

向作者/读者索取更多资源

Chronic, uncontrollable stress can lead to various pathologies [1-6]. Adaptive behaviors, such as reward consumption, control excessive stress responses and promote positive health outcomes [3,7-10]. Corticotrophin-releasing hormone (CRH) neurons in paraventricular nucleus (PVN) represent a key neural population organizing endocrine, autonomic, and behavioral responses to stress by initiating hormonal cascades along the hypothalamic-pituitary-adrenal (HPA) axis and orchestrating stress-related behaviors through direct projections to limbic and auto- nomic brain centers [11-18]. Although stress and reward have been reported to induce changes of c-Fos and CRH expression in PVN CRH neurons [19-23], it has remained unclear how these neurons respond dynamically to rewarding stimuli to mediate the stress-buffering effects of reward. Using fiber photometry of Ca2+ signals within genetically identified PVN CRH neurons in freely behaving mice [24-26], we find that PVN CRH neurons are rapidly and strongly inhibited by reward consumption. Reward decreases anxiety-like behavior and stress-hormone surge induced by direct acute activation of PVN CRH neurons or repeated stress challenge. Repeated stress upregulates glutamatergic transmission and induces an N-methyl-D-aspartate receptor (NMDAR)-dependent burst-firing pattern in these neurons, whereas reward consumption rebalances the synaptic homeostasis and abolishes the burst firing. Anatomically, PVN CRH neurons integrate widespread information from both stress-and reward-related brain areas in the forebrain and midbrain, including multiple direct long-range GABAergic afferents. Together, these findings reveal a hypothalamic circuit that organizes adaptive stress response by complementarily integrating reward and stress signals and suggest that intervention in this circuit could provide novel methods to treat stress-related disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据