4.7 Article

Regulation of membrane KCNQ1/KCNE1 channel density by sphingomyelin synthase 1

期刊

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00272.2015

关键词

KCNQ1; KCNE1; sphingomyelin synthase; PKD

资金

  1. Japan Society for the Promotion of Science [25290006, 25670719, 15H01442]
  2. Grants-in-Aid for Scientific Research [15H01442, 25670719, 16H06316] Funding Source: KAKEN

向作者/读者索取更多资源

Sphingomyelin synthase (SMS) catalyzes the conversion of phosphatidylcholine and ceramide to sphingomyelin and diacylglycerol. We previously showed that SMS1 deficiency leads to a reduction in expression of the K+ channel KCNQ1 in the inner ear (Lu MH, Takemoto M, Watanabe K, Luo H, Nishimura M, Yano M, Tomimoto H, Okazaki T, Oike Y, and Song WJ. J Physiol 590: 4029-4044, 2012), causing hearing loss. However, it remains unknown whether this change in expression is attributable to a cellular process or a systemic effect in the knockout animal. Here, we examined whether manipulation of SMS1 activity affects KCNQ1/KCNE1 currents in individual cells. To this end, we expressed the KCNQ1/KCNE1 channel in human embryonic kidney 293T cells and evaluated the effect of SMS1 manipulations on the channel using whole cell recording. Application of tricyclodecan-9-yl-xanthogenate, a nonspecific inhibitor of SMSs, significantly reduced current density and altered channel voltage dependence. Knockdown of SMS1 by a short hairpin RNA, however, reduced current density alone. Consistent with this, overexpression of SMS1 increased the current density without changing channel properties. Furthermore, application of protein kinase D inhibitors also suppressed current density without changing channel properties; this effect was nonadditive with that of SMS1 short hairpin RNA. These results suggest that SMS1 positively regulates KCNQ1/KCNE1 channel density in a protein kinase D-dependent manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据