4.7 Article

An updated Lagrangian LBM-DEM-FEM coupling model for dual-permeability fissured porous media with embedded discontinuities

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2018.09.034

关键词

Discrete-continuum coupling; Strong discontinuity; Machine learning; LBM-DEM-FEM; Dual-permeability; Fractured porous media

资金

  1. Earth Materials and Processes program from the US Army Research Office [W911NF-15-1-0581]
  2. Dynamic Materials and Interactions Program from the Air Force Office of Scientific Research, USA [FA9550-17-1-0169]
  3. nuclear energy university program from department of energy, USA [DE-NE0008534]
  4. Mechanics of Materials and Structures program at National Science Foundation, USA [CMMI-1462760]
  5. Army Research Laboratory
  6. U.S. Government

向作者/读者索取更多资源

Many engineering applications and geological processes involve embedded discontinuities in porous media across multiple length scales (e.g. rock joints, grain boundaries, deformation bands and faults). Understanding the multiscale path-dependent hydro-mechanical responses of these interfaces across length scales is of ultimate importance for applications such as CO2 sequestration, hydraulic fracture and earthquake rupture dynamics. While there exist mathematical frameworks such as extended finite element and assumed strain to replicate the kinematics of the interfaces, modeling the cyclic hydro-mechanical constitutive responses of the interfaces remains a difficult task. This paper presents a semi-data-driven multiscale approach that obtains both the traction-separation law and the aperture-porosity-permeability relation from micro-mechanical simulations performed on representative elementary volumes in the finite deformation range. To speed up multiscale simulations, the incremental constitutive updates of the mechanical responses are obtained from discrete element simulations at the representative elementary volume whereas the hydraulic responses are generated from a neural network trained with data from lattice Boltzmann simulations. These responses are then linked to a macroscopic dual-permeability model. This approach allows one to bypass the need of deriving multi-physical phenomenological laws for complex loading paths. More importantly, it enables the capturing of the evolving anisotropy of the permeabilities of the macro- and micro-pores. A set of numerical experiments are used to demonstrate the robustness of the proposed model. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据