4.7 Article

Adaptive color deconvolution for histological WSI normalization

期刊

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
卷 170, 期 -, 页码 107-120

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2019.01.008

关键词

Color normalization; Digital pathology; Stain separation; WSI; CAD

资金

  1. National Natural Science Foundation of China [61771031, 61871011, 61371134, 61501009]

向作者/读者索取更多资源

Background and Objective: Color consistency of histological images is significant for developing reliable computer-aided diagnosis (CAD) systems. However, the color appearance of digital histological images varies across different specimen preparations, staining, and scanning situations. This variability affects the diagnosis and decreases the accuracy of CAD approaches. It is important and challenging to develop effective color normalization methods for digital histological images. Methods: We proposed a novel adaptive color deconvolution (ACD) algorithm for stain separation and color normalization of hematoxylin-eosin-stained whole slide images (WSIs). To avoid artifacts and reduce the failure rate of normalization, multiple prior knowledges of staining are considered and embedded in the ACD model. To improve the capacity of color normalization for various WSIs, an integrated optimization is designed to simultaneously estimate the parameters of the stain separation and color normalization. The solving of ACD model and application of the proposed method involves only pixel-wise operation, which makes it very efficient and applicable to WSIs. Results: The proposed method was evaluated on four WSI-datasets including breast, lung and cervix cancers and was compared with 6 state-of-the-art methods. The proposed method achieved the most consistent performance in color normalization according to the quantitative metrics. Through a qualitative assessment for 500 WSIs, the failure rate of normalization was 0.4% and the structure and color artifacts were effectively avoided. Applied to CAD methods, the area under receiver operating characteristic curve for cancer image classification was improved from 0.842 to 0.914. The average time of solving the ACD model is 2.97 s. Conclusions: The proposed ACD model has prone effective for color normalization of hematoxylin-eosinstained WSIs in various color appearances. The model is robust and can be applied to WSIs containing different lesions. The proposed model can be efficiently solved and is effective to improve the performance of cancer image recognition, which is adequate for developing automatic CAD programs and systems based on WSIs. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据