4.7 Article

Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory

期刊

COMPOSITE STRUCTURES
卷 209, 期 -, 页码 811-829

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2018.10.106

关键词

Postbuckling; Bi-directional functionally graded materials; Porosities; Third-order shear deformation theory; Generalized differential quadrature method

资金

  1. National Natural Science Foundation of China [11802101, 11772138]
  2. Ministry of Science and Technology of China [2018YFF01014200]
  3. NSFC [11702103]
  4. Fundamental Research Funds for the Central Universities (HUST) [2018KFYYXJJ008]

向作者/读者索取更多资源

In this work, postbuckling response of bi-directional functionally graded (FG) beams with porosities is investigated. The transverse shear deformation is taken into account based on a novel third-order shear deformation theory in which the kinematic of displacements is derived from an elastic formulation. Porosities owing to the technical issue during the preparation of functionally graded materials (FGMs) with even and uneven distributions are considered. Material properties of bi-directional FG beams vary smoothly along the thickness and axial directions simultaneously based on the power law distribution. Geometric nonlinearity is described by employing the von Karman nonlinear theory. Equations of motion are derived utilizing the principle of minimum potential energy. Nonlinear partial differential equations are solved numerically to obtain the critical buckling loads and the postbuckling equilibrium paths under different boundary conditions using the generalized differential quadrature method (GDQM) and the Newton-Raphson iteration. Numerical results demonstrate that FG and axially FG (AFG) indexes, porosities distribution, boundary condition, Young's modulus ratio, aspect ratio, and plane strain and plane stress states have significant influences on the buckling and postbuckling responses of bi-directional FG beams.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据