4.7 Article

Novel breviscapine nanocrystals modified by panax notoginseng saponins for enhancing bioavailability and synergistic anti-platelet aggregation effect

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 175, 期 -, 页码 333-342

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2018.11.067

关键词

Nanocrystals; Breviscapine; Panax notoginseng saponins; Bioavailability; Anti-platelet aggregation

资金

  1. National Natural Science Foundation of China [81560656, 81760715]
  2. Young Jinggang Scholar Award Program of Jiangxi Province [20162BCB23033]
  3. excellent young scientists of Jiangxi Province [20162BCB23033]

向作者/读者索取更多资源

Breviscapine (BVP) is a flavonoid compound with strong neuroprotective and anti-platelet aggregation effect. The objective of this study is to design novel BVP nanocrystals modified by natural panax notoginseng saponins (PNS) for enhancing dissolution and anti-platelet aggregation effect of BVP. BVP nanocrystals modified by PNS (BVP-NC/PNS) were firstly prepared by coupling homogenization technology and freeze-drying technology, and BVP nanocrystals modified by RH40 (BVP-NC/RH40) as reference for comparison. The morphology, crystals characterization, dissolution behavior and anti-platelet aggregation effect of BVP-NC/PNS was systemically evaluated. The results demonstrated that the PNS could effectively maintain stability of BVP-NC at suspensions state dependent of its surface activity and the electrostatic repulsion effect. Combination of PNS and trehalose could prevent the aggregation of BVP-NC/PNS during freeze-drying. The PXRD and DSC results demonstrated that the BVP crystal state in BVP-NC/PNS was not changed owing to PNS modification and homogenization treatment. And the freeze-dried BVP-NC could easily recover back to BVP-NS and significantly improve the dissolution of BVP. The AUC((0-infinity)) of the BVP-NC/PNS was 4.54 times as high as that of the coarse BVP, but not significantly different compared to that of BVP-NC/RH40 (p < 0.05). The anti-platelet aggregation results demonstrated that, BVP-NC/PNS group showed more effective inhibition on PAF-induced platelet aggregation compared with corresponding control groups, which might attribute to the enhanced bioavailability of BVP and synergistic effect of PNS with BVP. In conclusion, PNS could be used as an alternative stabilizer for preparation of BVP-NC, and BVP-NC modified by PNS is a promising formulation strategy for enhancing oral bioavailability and anti-platelet aggregation of BVP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据