4.6 Article

Mean warming not variability drives marine heatwave trends

期刊

CLIMATE DYNAMICS
卷 53, 期 3-4, 页码 1653-1659

出版社

SPRINGER
DOI: 10.1007/s00382-019-04707-2

关键词

Extreme event; Climate change; Stochastic model; Sea surface temperature

资金

  1. National Sciences and Engineering Council of Canada (NSERC) [RGPIN-2018-05255]

向作者/读者索取更多资源

Marine heatwaves have been shown to be increasing in frequency, duration and intensity over the past several decades. Are these changes related to rising mean temperatures, changes to temperature variability, or a combination of the two? Here we investigate this question using satellite observations of sea surface temperature (SST) covering 36 years (1982-2017). A statistical climate model is used to simulate SST time series, including realistic variability based on an autoregressive model fit to observations, with specified trends in mean and variance. These simulated SST time series are then used to test whether observed trends in marine heatwave properties can be explained by changes in either mean or variability in SST, or both. We find changes in mean SST to be the dominant driver of the increasing frequency of marine heatwave days over approximately 2/3 of the ocean; while it is the dominant driver of changes in marine heatwave intensity (temperature anomaly) over approximately 1/3 of the ocean. We also find that changes in mean SST explain changes in both MHW properties over a significantly larger proportion of the world's ocean than changes in SST variance. The implication is that given the high confidence of continued mean warming throughout the twenty-first century due to anthropogenic climate change we can expect the historical trends in marine heatwave properties to continue over the coming decades.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据