4.8 Article

Reaction Mechanisms for Long-Life Rechargeable Zn/MnO2 Batteries

期刊

CHEMISTRY OF MATERIALS
卷 31, 期 6, 页码 2036-2047

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.8b05093

关键词

-

资金

  1. State of Washington through the University of Washington Clean Energy Institute
  2. State of Washington via Washington Research Foundation
  3. Inamori Foundation
  4. DOE Office of Science User Facility [DE-AC02-05CH11231]
  5. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]
  6. program of Shanghai Subject Chief Scientist [16XD1401100]
  7. Guangdong Innovation Ream Project [2017ZT07C062]
  8. Shenzhen Pengcheng-Scholarship program

向作者/读者索取更多资源

Rechargeable aqueous Zn-ion batteries (ZIBs) are very promising for large-scale grid energy storage applications owing to their low cost, environmentally benign constituents, excellent safety, and relatively high energy density. Their usage, however, is largely hampered by the fast capacity fade. The complexity of the reactions has resulted in long-standing ambiguities of the chemical pathways of Zn/MnO2 system. In this study, we find that both H+/Zn2+ intercalation and conversion reactions occur at different voltages and that the rapid capacity fading can clearly be ascribed to the rate-limiting and irreversible conversion reactions at a lower voltage. By limiting the irreversible conversion reactions at similar to 1.26 V, we successfully demonstrate ultrahigh power and long life that are superior to most of the reported ZIBs or even some lithium-ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据