4.8 Article

Solid-State Divalent Ion Conduction in ZnPS3

期刊

CHEMISTRY OF MATERIALS
卷 31, 期 10, 页码 3652-3661

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.9b00207

关键词

-

资金

  1. Caltech
  2. Dow Next Generation Educator Fund
  3. Resnick Sustainability Institute at Caltech
  4. Mellichamp Sustainability Fellowship at UCSB
  5. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  6. Air Force Office of Scientific Research [FA9550-18-1-0280]
  7. National Science Foundation [OCI-0725070, ACI-1238993, DMR-1555153]
  8. University of Illinois at Urbana-Champaign
  9. state of Illinois
  10. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Next-generation batteries based on divalent working ions have the potential to both reduce the cost of energy storage devices and increase performance. Examples of promising divalent systems include those based on Mg2+, Ca2+, and Zn2+ working ions. Development of such technologies is slow, however, in part due to the difficulty associated with divalent cation conduction in the solid state. Divalent ion conduction is especially challenging in insulating materials that would be useful as solid-state electrolytes or protecting layers on the surfaces of metal anodes. Furthermore, there are no reports of divalent cation conduction in insulating, inorganic materials at reasonable temperatures, prohibiting the development of structure-property relationships. Here, we report Zn2+ conduction in insulating ZnPS3, demonstrating divalent ionic conductivity in an ordered, inorganic lattice near room temperature. Importantly, the activation energy associated with the bulk conductivity is low, 351 +/- 99 meV, comparable to some Li+ conductors such as LTTO, although not as low as the superionic Li+ conductors. First-principles calculations suggest that the barrier corresponds to vacancy-mediated diffusion. Assessment of the structural distortions observed along the ion diffusion pathways suggests that an increase in the P-P-S bond angle in the [P2S6](4-) moiety accommodates the Zn2+ as it passes through the high-energy intermediate coordination environments. ZnPS3 now represents a baseline material family to begin developing the structure property relationships that control divalent ion diffusion and conduction in insulating solid-state hosts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据