4.8 Article

Area-Selective Atomic Layer Deposition of ZnO by Area Activation Using Electron Beam-Induced Deposition

期刊

CHEMISTRY OF MATERIALS
卷 31, 期 4, 页码 1250-1257

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.8b03165

关键词

-

资金

  1. TNO-Holst Centre (The Netherlands)
  2. Solliance
  3. Dutch province of Noord-Brabant

向作者/读者索取更多资源

Area-selective atomic layer deposition (ALD) of ZnO was achieved on SiO2 seed layer patterns on H-terminated silicon substrates, using diethylzinc (DEZ) as the zinc precursor and H2O as the coreactant. The selectivity of the ALD process was studied using in situ spectroscopic ellipsometry and scanning electron microscopy, revealing improved selectivity for increasing deposition temperatures from 100 to 300 degrees C. The selectivity was also investigated using transmission electron microscopy and energy-dispersive X-ray spectroscopy. Density functional theory (DFT) calculations were performed to corroborate the experimental results obtained and to provide an atomic-level understanding of the underlying surface chemistry. A kinetically hindered proton transfer reaction from the H-terminated Si was conceived to underpin the selectivity exhibited by the ALD process. By combining the experimental and DFT results, we suggest that the trend in selectivity with temperature may be due to a strong DEZ or H2O physisorption on the H-terminated Si that hampers high selectivity at low deposition temperature. This work highlights the deposition temperature as an extra process parameter to improve the selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据