4.7 Article

Acetaminophen absorption and metabolism in an intestine/liver microphysiological system

期刊

CHEMICO-BIOLOGICAL INTERACTIONS
卷 299, 期 -, 页码 59-76

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2018.11.010

关键词

Microphysiological system; Alternative methods; APAP; ADMETox; 3D tissue culture; Organoids

资金

  1. National Council for Scientific and Technological Development
  2. RENAMA - The Brazilian Network for Alternative Methods
  3. Brazil Ministry of Health

向作者/读者索取更多资源

This study describes the characterization of pharmacokinetic (PK) properties of acetaminophen (APAP) in the Two-Organ-Chip platform (2-OC), a two-chamber device able to cultivate 3D tissues under flow. The APAP intestinal absorption and hepatic metabolism were emulated by human intestine and liver equivalents respectively. The intestinal barrier was produced using Caco-2 and HT-29 cells. The liver spheroids were produced with HepaRG and HHSTeC cells. Cell viability and toxicity were assessed by MTT assay, histology, confocal immunohistochemistry, and multiparametric high content analysis. Gene expression of intestine and liver equivalents were assessed by real-time PCR. Three assemblies of Microphysiological System (MPS) were applied: Intestine 2-OC, Liver 2-OC, and Intestine/Liver 2-OC. The oral administration was emulated by APAP placement over the apical side of the intestinal barrier and the intravenous routes were mimic by the application in the medium. Samples were analyzed by HPLC/UV. APAP 12 mu M or 2 mu M treatment did not induce cytotoxicity for the intestinal barrier (24 h time-point) or for the liver spheroids 12 h time-point), respectively. All preparations showed slower APAP absorption than reported for humans: Peak time (Tmax) = 12 h for Intestine 2-OC and 6 h for Intestine/Liver 2-OC in both static and dynamic conditions, against reported Tmax of 0,33 to 1,4 h after oral administration to humans. APAP metabolism was also slower than reported for humans. The APAP half-life (T-1/(2)) was 12 h in the dynamic Liver 2-OC, against T-1/2 = 2 +/- 0,4 h reported for humans. Samples taken from the Liver 2-OC static preparation did not show APAP concentration decrease. These findings show the MPS capability and potential to emulate human PK properties and highlight the critical role of mechanical stimulus over cell functionality, especially by demonstrating the clear positive influence of the microfluidic flow over the liver equivalents metabolic performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据