4.7 Article

Hydrogenation and hydrodeoxygenation of aromatic lignin monomers over Cu/C, Ni/C, Pd/C, Pt/C, Rh/C and Ru/C catalysts: Mechanisms, reaction micro-kinetic modelling and quantitative structure-activity relationships

期刊

CHEMICAL ENGINEERING JOURNAL
卷 359, 期 -, 页码 305-320

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2018.11.107

关键词

Lignin valorisation; Biomass deoxygenation; Hydrogenation and hydrocracking; Bio-based chemicals; Micro-kinetic modelling; Bio-refining to aromatics

资金

  1. Slovenian Research Agency [P2-0152]
  2. Scholarship Fund through the Scholarships for study of nationals of Western Balkan states in the Republic of Slovenia [JR 177]
  3. Knut and Alice Wallenberg Foundation [2015.0057]
  4. Republic of Slovenia
  5. Ministry of Education, Science and Sport
  6. European Union under the European Regional Development Fund

向作者/读者索取更多资源

In this integrated in silico and experimental study, the activity, selectivity and mechanisms of commercially-available noble and transition metal heterogeneous catalysts, on neutral (carbon) support were investigated for hydrodeoxygenation (HDO) of eugenol. The latter was selected as a model compound of lignin building blocks. An influence of the process operating conditions (temperature, pressure and initial solid loading) on the reaction pathway and product distribution was studied as well. The previously-proposed reaction network for phenols HDO over Ru/C was found valid also for other platinum-group- (Pd, Pt and Rh) and non-noble (Cu or Ni) metallic clusters supported on C. Ru/C system exhibited the best HDO turnover performance, followed by the Rh/C, which especially demonstrated an excellent hydrogenation activity. Pt and Pd showed low deoxygenation and moderate hydrogenation activity. Kinetic parameters for all reactions on the surface were determined for all tested metals with a micro-kinetic model, by regression analysis on the foundation of 5760 experimentally-determined concentration values. Computation took into account resistances caused by transport phenomena, adsorption/desorption kinetics, and especially surface and bulk reaction kinetics. Ratio between adsorption and desorption rate constants for dissolved saturated, aromatic and hydrogen species were predicted, indicating a notable coverage effect on the catalyst reactivity. The saturation of functionalised benzene ring was approximately 3-, 11-, 32-, 10-, and 6-times faster than the C-O hydrogenolysis over ruthenium, platinum, palladium, rhodium and nickel, respectively. Methoxy group removal is easier from aromatics, compared to aliphatic species and also compared to the hydroxyl group removal. The heteroatom bond breaking for 2-methoxy-4-propylcyclohexanol proceed mostly via catechol-type diol formation, and subsequently, de-hydroxylation, particularly observable on Pt.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据