4.7 Article

Characterization and flocculation evaluation of a novel carboxylated chitosan modified flocculant by UV initiated polymerization

期刊

CARBOHYDRATE POLYMERS
卷 208, 期 -, 页码 213-220

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2018.12.064

关键词

Algae removal; Chitosan; Photopolymerization; Cationic modification; Flocculation

资金

  1. National Natural Science Foundation of China [51508268]
  2. National Key Research and Development Program of China [2017YFB0602500]
  3. 2018 Six Talent Peaks Project of Jiangsu Province [JNHB-038]

向作者/读者索取更多资源

In this work, carboxylated chitosan modified flocculant (CC-g-PCD) was prepared by graft copolymerization technique to enhance the charge-attracting and adhesion of bridges and net-sweeping capacity of flocculants. The dimethyldiallylammonium chloride (DMDAAC), carboxylated chitosan (CMCS), and 3-chloro-2-chloropropyltrimethylammonium chloride (CTA) were utilized for synthesis of CC-g-PCD via photopolymerization techniques. The synthesized CC-g-PCD was characterized by H-1 NMR, SEM, XRD, and FTIR, and the characteristic groups on the main chain and surface morphological structure of CC-g-PCD were investigated. The obtained results indicated that CTA and DMDAAC were successfully grafted into the CPCTS. In ordered to evaluate the flocculation performance of CC-g-PCD at various dosages, stirring intensity (G value), and pH value by detecting Chl a, COD, and turbidity, the actual lake water that contains algae was used for flocculation assessment tests. The experimental results of the water sample with flocculation showed that the maximum flocculation efficiency of turbidity (91.1%), Chl a (97.2%), and COD (97.0%) can be achieved by CC-g-PCD at pH 7, G value 200 s(-1), and 4.0 mg/L. The comparison results demonstrated that CC-g-PCD had better flocculation efficiency than commercial flocculants. Finally, based on the analysis of algae removal in combination with Zeta potential measurements, the flocculation mechanisms in actual lake water at various dosages and pH values were adsorption bridging and electrical neutralization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据