4.8 Article

Induction and decay of functional complement-fixing antibodies by the RTS,S malariavaccine in children, and a negative impact of malaria exposure

期刊

BMC MEDICINE
卷 17, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12916-019-1277-x

关键词

Antibody function; Circumsporozoite protein; Complement; Malaria; Plasmodium falciparum; RTS,S; Vaccines

资金

  1. National Health and Medical Research Council of Australia [1092789, 1077636]
  2. Australian Research Council Future Fellowship [FT130101122]
  3. Australian Government Research Training Program Scholarship
  4. Monash Postgraduate Publication Award
  5. PATH's Malaria Vaccine Initiative
  6. NHMRC [1134989]
  7. Spanish Agency for International Cooperation and Development (AECID)
  8. Victorian State Government Operational Infrastructure Support grant
  9. NHMRC Independent Research Institutes Infrastructure Support Scheme
  10. National Health and Medical Research Council of Australia [1077636, 1134989] Funding Source: NHMRC
  11. Australian Research Council [FT130101122] Funding Source: Australian Research Council

向作者/读者索取更多资源

BackgroundLeading malaria vaccine, RTS,S, is based on the circumsporozoite protein (CSP) of sporozoites. RTS,S confers partial protection against malaria in children, but efficacy wanes relatively quickly after primary immunization. Vaccine efficacy has some association with anti-CSP IgG; however, it is unclear how these antibodies function, and how functional antibodies are induced and maintained over time. Recent studies identified antibody-complement interactions as a potentially important immune mechanism against sporozoites. Here, we investigated whether RTS,Svaccine-induced antibodies could function by interacting with complement.MethodsSerum samples were selected from children in a phase IIb trial of RTS,S/AS02(A) conducted at two study sites of high and low malaria transmission intensity in Manhica, Mozambique. Samples following primary immunization and 5-year post-immunization follow-up time points were included. Vaccine-induced antibodies were characterized by isotype, subclass, and epitope specificity, and tested for the ability to fix and activate complement. We additionally developed statistical methods to model the decay and determinants of functional antibodies after vaccination.ResultsRTS,S vaccination induced anti-CSP antibodies that were mostly IgG1, with some IgG3, IgG2, and IgM. Complement-fixing antibodies were effectively induced by vaccination, and targeted the central repeat and C-terminal regions of CSP. Higher levels of complement-fixing antibodies were associated with IgG that equally recognized both the central repeat and C-terminal regions of CSP. Older age and higher malaria exposure were significantly associated with a poorer induction of functional antibodies. There was a marked decay in functional complement-fixing antibodies within months after vaccination, as well as decays in IgG subclasses and IgM. Statistical modeling suggested the decay in complement-fixing antibodies was mostly attributed to the waning of anti-CSP IgG1, and to a lesser extent IgG3.ConclusionsWe demonstrate for the first time that RTS,S can induce complement-fixing antibodies in young malaria-exposed children. The short-lived nature of functional responses mirrors the declining vaccine efficacy of RTS,S over time. The negative influence of age and malaria exposure on functional antibodies has implications for understanding vaccine efficacy in different settings. These findings provide insights into the mechanisms and longevity of vaccine-induced immunity that will help inform the future development of highly efficacious and long-lasting malaria vaccines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据