4.7 Article

An Axiom Cajanus SNP Array based high density genetic map and QTL mapping for high-selfing flower and seed quality traits in pigeonpea

期刊

BMC GENOMICS
卷 20, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12864-019-5595-3

关键词

Cleistogamous flower; Selfing; Mapping; Shriveled seed; Axiom Cajanus SNP Array; QTLs

资金

  1. Department of Agriculture Cooperation & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Government of India
  2. United States Agency for International Development (USAID)
  3. Department of Biotechnology, Government of India
  4. Ministry of Agriculture, Government of Karnataka
  5. CGIAR Research Program on Grain Legumes and Dryland Cereals (GLDC)

向作者/读者索取更多资源

BackgroundPigeonpea has considerable extent of insect-aided natural out-crossing that impedes genetic purity of seeds. Pre-anthesis cleistogamy in pigeonpea promotes self-pollination which helps in maintaining genetic purity. The cleistogamous flowers are linked with shriveled seeds, an undesirable trait from variety adoption point of view, and breeding using genomics tools can help in overcoming this constraint. Therefore, in order to identify genomic regions governing these target traits, one recombinant inbred line (RIL) population was developed using contrasting parents (ICPL 99010 and ICP 5529) for flower shape and shriveled seeds. The RILs were phenotyped for two years and genotyped using the Axiom Cajanus SNP Array.ResultsOut of the 56,512 unique sequence variations on the array, the mapping population showed 8634 single nucleotide polymorphism (SNPs) segregating across the genome. These data facilitated generation of a high density genetic map covering 6818 SNPs in 974cM with an average inter-marker distance of 0.1cM, which is the lowest amongst all pigeonpea genetic maps reported. Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified 5 QTLs associated with cleistogamous flower, 3 QTLs for shriveled seed and 1 QTL for seed size. The phenotypic variance explained by these QTLs ranged from 9.1 to 50.6%. A consistent QTL qCl3.2 was identified for cleistogamous flower on CcLG03 covering a span of 42kb in the pigeonpea genome. Epistatic QTLs were also identified for cleistogamous flower and shriveled seed traits.ConclusionIdentified QTLs and genomic interactions for cleistogamous flower, shriveled seed and seed size will help in incorporating the required floral architecture in pigeonpea varieties/lines. Besides, it will also be useful in understanding the molecular mechanisms, and map-based gene cloning for the target traits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据