4.8 Article

Photoelectrochemical biosensor for microRNA detection based on a MoS2/g-C3N4/black TiO2 heterojunction with Histostar@AuNPs for signal amplification

期刊

BIOSENSORS & BIOELECTRONICS
卷 128, 期 -, 页码 137-143

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2018.12.048

关键词

Photoelectrochemical biosensor; MicroRNA detection; MoS2/g-C3N4/black TiO2 heterojunction; Histostar@AuNPs; S9.6 antibody

资金

  1. Natural Science Foundation of Shandong Province of China [ZR2014BQ029]
  2. National Natural Science Foundation of China [21775090, 21375079]
  3. Project of the Distinguished Young Scholar of Shandong Agricultural University, Founds of Shandong Double Tops Program [SYL2017XTTD15]

向作者/读者索取更多资源

Herein, a novel photoelectrochemical (PEC) biosensor was developed for the ultrasensitive detection of microRNA-396a based on a MoS2/g-C3N4/black TiO2 heterojunction as the photoactive material and gold nanoparticles carrying Histostar antibodies (Histostar@AuNPs) for signal amplification. Briefly, MoS2/g-C3N4/black TiO2 was deposited on an indium tin oxide (ITO) electrode surface, after which gold nanoparticles (AuNPs) and probe DNA were assembled on the modified electrode. Hybridization with miRNA-396a resulted in a rigid DNA: RNA hybrid being formed, which was recognized by the S9.6 antibody. The captured antibody can further conjugate with the secondary IgG antibodies of Histostar@AuNPs, thereby leading to the immobilization of horse radish peroxidase (HRP). In the presence of HRP, the oxidation of 4-chloro-1-naphthol (4-CN) by H2O2 was accelerated, producing the insoluble product benzo-4-chlorohexadienone on the electrode surface and causing a significant decrease in the photocurrent. The developed biosensor could detect miRNA-396a at concentrations from 0.5 fM to 5000 fM, with a detection limit of 0.13 fM. Further, the proposed method can also be used to investigate the effect of heavy metal ions on the expression level of miRNAs. Results suggest that the biosensor developed herein offers a promising platform for the ultrasensitive detection of miRNA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据