4.8 Article

Photothermal effects induced by surface plasmon resonance at graphene/gold nanointerfaces: A multiscale modeling study

期刊

BIOSENSORS & BIOELECTRONICS
卷 126, 期 -, 页码 470-477

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2018.11.007

关键词

Photothermal effects; Surface plasmon resonance; Multiscale simulation method; Sensitivity and detection accuracy; Graphene/gold nanointerface

资金

  1. Fundamental Research Funds for the Central Universities [106112017CDJQJ128836]
  2. Key Science and Technology Program of Chongqing, China [cstc2017shms-zdyfX0028]
  3. Technology innovation and application demonstration project of Chongqing [cstc2018jszx-cyzd0587]
  4. National Natural Science Foundation of China [51303033]
  5. Guangxi Natural Science Foundation [2014GXNSFCB118004]

向作者/读者索取更多资源

Surface plasmon resonance (SPR) biosensors have enormous potential in biological recognitions and biomolecular interactions, especially for the real time measurement of disease diagnosis and drug screening. Extensive efforts have been invested to ameliorate the sensing performances, while the photothermal effects, which are induced by the plasmon resonance, have an obvious impact. However, due to the limitations of experimental approaches, the theoretical mechanisms and specific influences of the SPR sensors with photothermal effects are few researched. Here, a multiscale simulation method is developed to investigate the photothermal effects at graphene/gold (Au) nanointerfaces, and to calculate the quantitative contribution of the photothermal effects towards high reliability SPR sensors in order to elucidate their influence on the sensing performances by means of first-principle calculations and molecular dynamics simulations. Our results indicate that the sensitivity and detection accuracy of graphene/Au SPR sensors can be tailored from 0 K to 600 K, due to the tunable dielectric constants of Au and graphene films through temperature variation. By controlling the its material thickness, interfacial combination and lattice strain, an optimized graphene/Au SPR sensor with higher sensitivity, detection accuracy, and reliability to the temperature rising has been achieved. Such multiscale simulation method, which is capable of seeking both the role and the underlying mechanism of the interfacial phenomena, can serve as an excellent guideline for the performance optimization and commercialized application of SPR sensors in the analytical chemistry and biomedical fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据