4.7 Review

A review for the pharmacological effect of lycopene in central nervous system disorders

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 111, 期 -, 页码 791-801

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2018.12.151

关键词

Lycopene; Oxidative stress; Neuroinflammation; Central nervous system; Neurodegeneration

资金

  1. Natural Science Foundation of China [81571323, 81771467, 81701286]
  2. scientific research project of Nantong First People's Hospital [YJ201601]

向作者/读者索取更多资源

Lycopene is an aliphatic hydrocarbon carotenoid extracted from plants like tomatoes, papayas, and watermelons. Previous studies have shown that lycopene can exert prophylactic and/or therapeutic effects in different disorders, such as heart failure and neoplasm via anti-oxidative, anti-inflammatory, and anti-proliferative activities. In the central nervous system (CNS), lycopene also has prophylactic and/or therapeutic effects in different type of disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), cerebral ischemia, epilepsy, and depression. Lycopene also improves cognition and memory ability of rodents in different pathological conditions, such as diabetes, colchicine exposure, high-fat diet (HFD), and aging. Further, lycopene can prevent neuro-toxicities induced by monosodium glutamate (MSG), trimethyltin (TMT), methyl-mercury (MeHg), tert-butyl hydroperoxide (t-BHP), and cadmium (Cd). In some special conditions such as ethanol addiction and haloperidol-induced orofacial dyskinesia, lycopene administration displays special therapeutic effects. Mechanisms including inhibition of oxidative stress and neuroinflammation, inhibition of neuronal apoptosis, and restoration of mitochondrial function have been shown to mediate the neuroprotective effects of lycopene. Other mechanisms, such as inhibition of nuclear factor-kappa B (NF-kappa B) and c-Jun N-terminal kinase (JNK), activation of the nuclear factor erythroid 2-related factor (Nrf2) and brain-derived neurotrophic factor (BDNF) signaling, and restoration of intracellular Ca2+ homeostasis, may be also involved in the neuroprotective effect of lycopene. In hope of get a clear impression about the role of lycopene in the CNS, we summarize and discuss the pharmacological effects of lycopene as well as its possible mechanisms in CNS disorder prevention and/or therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据