4.7 Article

Deep learning-based automatic volumetric damage quantification using depth camera

期刊

AUTOMATION IN CONSTRUCTION
卷 99, 期 -, 页码 114-124

出版社

ELSEVIER
DOI: 10.1016/j.autcon.2018.12.006

关键词

Convolutional neural network; Deep learning; Depth sensor; Concrete spalling; Volume quantification

资金

  1. NSERC [1262624]

向作者/读者索取更多资源

A depth camera or 3-dimensional scanner was used as a sensor for traditional methods to quantify the identified concrete spalling damage in terms of volume. However, to quantify the concrete spalling damage automatically, the first step is to detect (i.e., identify) the concrete spalling. The multiple spots of spalling can be possible within a single structural element or in multiple structural elements. However, there is, as of yet, no method to detect concrete spalling automatically using deep learning methods. Therefore, in this paper, a faster region-based convolutional neural network (Faster R-CNN)-based concrete spalling damage detection method is proposed with an inexpensive depth sensor to quantify multiple instances of spalling simultaneously in the same surface separately and consider multiple surfaces in structural elements. A database composed of 1091 images (with 853 x 1440 pixels) labeled for volumetric damage is developed, and the deep learning network is then modified, trained, and validated using the proposed database. The damage quantification is automatically performed by processing the depth data, identifying surfaces, and isolating the damage after merging the output from the Faster R-CNN with the depth stream of the sensor. The trained Faster R-CNN presented an average precision (AP) of 90.79%. Volume quantifications show a mean precision error (MPE) of 9.45% when considering distances from 100 cm to 250 cm between the element and the sensor. Also, an MPE of 3.24% was obtained for maximum damage depth measurements across the same distance range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据