4.7 Article

Parasitic protozoan interactions with bacterial microbiome in a tropical fish farm

期刊

AQUACULTURE
卷 502, 期 -, 页码 196-201

出版社

ELSEVIER
DOI: 10.1016/j.aquaculture.2018.12.037

关键词

Aquaculture; Chilodonella spp; Ciliate protozoan; Environmental DNA; Flavobacterium columnare; Metabarcoding; Microbiome

资金

  1. Smart Futures Grants
  2. Queensland GovernmentIntegrated management of parasite infections in tropical aquaculture
  3. Fisheries Research and Development Corporation (FRDC)
  4. James Cook University

向作者/读者索取更多资源

The bacterial microbiome is an important component of any aquaculture environment. The interaction between the bacterial microbiome and other microorganisms (e.g. parasites, viruses, or other bacteria) in aquaculture systems can prevent or contribute to disease outbreaks. This study characterised the bacterial composition associated with the abundance of a ciliated protozoan parasite, Chilodonella hexasticha, in gills and freshwater ponds of barramundi, Lates calcarifer, farm in tropical Queensland, Australia, over one year. An environmental DNA (eDNA) approach was used to estimate the abundance of C. hexasticha (copies/mu l) in water through SSUrDNA gene qPCR and the relative abundance of bacterial species in water and fish gills through 16S rRNA V3 and V4 metabarcoding. The overall bacterial community diversity, dominated by Actinobacteria (42%), Proteobacteria (28%), Bacteroidetes (10%) and Cyanobacteria (6%), was stable among ponds over the study period (p > .05). Of those that could be identified to species, Flavobacterium columnare, Veillonella dispar and Bdellovibrio bacteriovorus abundance correlated with both high C. hexasticha levels in pond water and high observed fish mortalities (p < .05). Results also revealed significantly higher levels of F. columnare, B. bacteriovorus, Plesiomonas shigelloides, Prostecobactor debontii and Oxalobacter formigenes (p < .05) in gills of fish with high infection levels of C. hexasticha compared to fish with no detected parasite infection. This study demonstrated, for the first time, a link between increased parasitic ciliate abundance, bacterial composition and fish mortalities in a freshwater aquaculture environment and the application of eDNA to investigate pathogen, host and environment interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据