4.7 Article

Construction of defective Mo15S19/CdS-diethylenetriamine heterosctructure photocatalyst for highly active and stable noble-metal-free photocatalytic hydrogen production

期刊

APPLIED SURFACE SCIENCE
卷 469, 期 -, 页码 505-513

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2018.11.078

关键词

Co-catalyst; Mo15S19; CdS; Nanocomposites; Photocatalytic H-2 production

资金

  1. National Natural Science Foundation of China [51572103, 21303129, 51502106]
  2. Anhui Province [1808085J14]
  3. Foundation for Young Talents in College of Anhui Province [gxyqZD2017051]
  4. Key Foundation of Educational Commission of Anhui Province [KJ2016SD53]
  5. Innovation Team of Design and Application of Advanced Energetic Materials [KJ2015TD003]

向作者/读者索取更多资源

CdS, as semiconductor catalyst, has attracted much attention in photocatalytic production of hydrogen for the wide range utilization of visible light. Usually, noble metal deposited as a co-catalyst on CdS surface is required to achieve high photocatalytic activity. Thus, replacing noble metal via cheap and easy synthesis co-catalyst would be of great value for developing cost-effective photocatalyst. In this work, noble-metal-free defective Mo15S19 combined with CdS-diethylenetriamine (DETA) hybrid makes efficient separation of photoinduced carriers, and more importantly, reduced overpotential for hydrogen evolution reaction, thereby improved catalytic hydrogen evolution performance of designed composite. In particular, 3%Mo15S19/CdS-DETA systems exhibited a high rate of hydrogen production, reaching 3.61 mmol g(-1)h(-1), which is similar with 3%Pt/CdS-DETA and 9.5 and 2.19 times as high as that of CdS nanoparticles (NPs) and CdS-DETA, respectively. At the same time, photocorrosion resistance of 3%Mo15S19/CdS-DETA systems was dramatically improved. According to DFT theoretical calculations, it was found that the enhanced photocatalytic performance and anticorrosion are mainly due to efficient transfer of photoexcited electrons from CdS-DETA to Mo15S19.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据