4.7 Article

Supporting carbon quantum dots on NH2-MIL-125 for enhanced photocatalytic degradation of organic pollutants under a broad spectrum irradiation

期刊

APPLIED SURFACE SCIENCE
卷 467, 期 -, 页码 320-327

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2018.10.165

关键词

MOFs; Carbon quantum dots; Visible light; Near-infrared light; RhB

资金

  1. National Science Fund of China [21577008]
  2. Fundamental Research Funds for Central Universities [2016J004]

向作者/读者索取更多资源

The rapid recombination of photoinduced electron-holes and the low utilization of solar energy have become two disadvantages limiting the performance of current photocatalysts. In this work, a novel composite photocatalyst, in which the carbon quantum dots (CQDs) were supported on the NH2-MIL-125 (a kind of metal-organic frameworks (MOFs)), was designed and constructed. The CQDs could not only serve as electron-acceptors for promoting the photoinduced charge separation in NH2-MIL-125, but also act as the spectrum converter (convert near-infrared light into visible light) to realize the enhanced light absorption by NH2-MIL-125. The NH2-MIL-125 supported CQDs (CQDs/NH2-MIL-125) displayed significantly enhanced photocatalytic activity compared with NH 2 -MIL-125 for Rhodamine B (RhB) degradation, regardless of the light source varied from the full-spectrum, visible light or even near-infrared light. Moreover, the photocatalytic efficiency of CQDs/NH2-MIL-125 was influenced by the CQDs content, and the composite with 1% CQDs loading exhibited the best performance. The excellent photocatalytic performance of CQDs/NH2-MIL-125 is attributed to the enhanced photoinduced charge separation and improved utilization efficiency of light energy. This work is expected to provide an attractive strategy for constructing high-efficiency photocatalyts towards environmental remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据