4.7 Article

Classification of multiple motor imagery using deep convolutional neural networks and spatial filters

期刊

APPLIED SOFT COMPUTING
卷 75, 期 -, 页码 461-472

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2018.11.031

关键词

Brain-Computer Interface (BCI); Electroencephalogram (EEG); Motor imagery (MI); Multi-class classification; Convolutional neural network (CNN)

资金

  1. Tecnologico Nacional de Mexico [5684.16-P]

向作者/读者索取更多资源

Brain-Computer Interfaces (BCI) are systems that translate brain activity patterns into commands for an interactive application, and some of them recognize patterns generated by motor imagery. Currently, these systems present performances and methodologies that still are not practical enough for realistic applications. Therefore, this paper proposes two methodologies for multiple motor imagery classification. Both methodologies use features extracted by a variant of Discriminative Filter Bank Common Spatial Pattern (DFBCSP) presented in this paper. The frequency bands selection in this variant is carried out by a novel iterative algorithm that selects the frequency band that attains the highest classification accuracy for specific binary classification. For each binary combination of classes, a frequency band is selected. The resulting samples are then set into a matrix which feeds one or many Convolutional Neural Networks previously optimized by using a Bayesian optimization. The first methodology applies a Convolutional Neural Network (CNN) for the classification of all classes and the second is a modular network composed of four expert CNNs. In this modular network, each expert CNN performs a binary classification, and a fully connected network analyzes their results. To validate both approaches two datasets were used, the BCI competition IV dataset 2a and another presented in this paper recorded from eight subjects by using the OpenBCI device. The experimental results demonstrated an improvement in the classification accuracy over many classic intelligent recognition methods, without a high computation time in order that they can be implemented in an online application. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据