4.6 Article

Charge transport mechanism of high-resistive state in RRAM based on SiOx

期刊

APPLIED PHYSICS LETTERS
卷 114, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5074116

关键词

-

资金

  1. Russian Science Foundation [18-49-08001]
  2. Ministry of Science and Technology (MOST) of Taiwan [107-2923-E-009-001-MY3]
  3. Russian Science Foundation [18-49-08001] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

Nonstoichiometric silicon oxide SiOx is a promising material for developing a new generation of high-speed, reliable flash memory based on the resistive effect. It is necessary to understand the electron transport mechanism of the high-resistive state in SiOx to develop a resistive memory element. At present, it is generally accepted that the charge transport of the high-resistive state in the Resistive Random Access Memory (RRAM) is described by the Frenkel effect. In our work, the charge transport of the high-resistive state in RRAM based on SiOx is analyzed with two contact-limited and five volume-limited charge transport models. It is established that the Schottky effect model, thermally assisted tunneling, the Frenkel model of Coulomb trap ionization, the Makram-Ebeid and Lannoo model of multiphonon isolated trap ionization, and the Nasyrov-Gritsenko model of phonon-assisted tunneling between traps, quantitatively, do not describe the charge transport of the high-resistive state in the RRAM based on SiOx. The Shklovskii-Efros percolation model gives a consistent explanation for the charge transport of the highresistive state in the RRAM based on SiOx at temperatures above room temperature. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据