4.8 Article

Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems

期刊

APPLIED ENERGY
卷 237, 期 -, 页码 862-872

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.01.001

关键词

Proton exchange membrane water electrolysis (PEMWE); Life cycle assessment (LCA); Energy modeling

资金

  1. German Federal Ministry of Education and Research (BMBF)

向作者/读者索取更多资源

This study discusses the potential of H-2 production by proton exchange membrane water electrolysis as an effective option to reduce greenhouse gas emissions in the hydrogen sector. To address this topic, a life cycle assessment is conducted to compare proton exchange membrane water electrolysis versus the reference process-steam methane reforming. As a relevant result we show that hydrogen production via proton exchange membrane water electrolysis is a promising technology to reduce CO2 emissions of the hydrogen sector by up to 75%, if the electrolysis system runs exclusively on electricity generated from renewable energy sources. In a future (2050) base-load operation mode emissions are comparable to the reference system. The results for the global warming potential show a strong reduction of greenhouse gas emissions by 2050. The thoroughly and in-depth modeled components of the electrolyser have negligible influence on impact categories; thus, emissions are mainly determined by the electricity mix. With 2017 electricity mix of Germany, the global warming potential corresponds to 29.5 kg CO2 eq. for each kg of produced hydrogen. Referring to the electricity mix we received from an energy model emissions can be reduced to 11.5 kg CO2 eq. in base-load operation by the year 2050. Using only the 3000 h of excess power from renewables in a year will allow for the reduction of the global warming potential to 3.3 kg CO2 eq. From this result we see that an environmentally friendly electricity mix is crucial for reducing the global warming impact of electrolytic hydrogen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据