4.8 Article

Transmissive microfluidic active cooling for concentrator photovoltaics

期刊

APPLIED ENERGY
卷 236, 期 -, 页码 906-915

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2018.12.027

关键词

CPV; CSP; Hybrid CPV/T; Active cooling; Microfluidics; Spectrum-splitting

资金

  1. Advanced Research Projects Agency-Energy, U.S. Department of Energy [DE-AR0000473]

向作者/读者索取更多资源

We present the design, fabrication, characterization, and field testing of transmissive active cooling for use in a point-focus spectrum-splitting hybrid concentrator photovoltaics/thermal (CPV/T) system. Seven parallel-path 100 mu m thick microchannels are made using polydimethylsiloxane and attached to a CPV module containing a 6 x 6 array of 5.5 mm transmissive CPV cells on a sapphire substrate. Water is flowed through the micro-channels to actively cool the CPV cells. The total transmittance of the CPV module reduces by 5.2% with the addition of the active cooling microchannels, relative to the module transmission with no microchannels. The peak cell temperature is measured as 69 degrees C with a thermal resistance of 9.351 K/W at 157 suns, well below the 110 degrees C maximum allowed temperature. A maximum flowrate of 16.7 g/s is achieved from a 13 psi pressure drop across the microchannels and manifold assembly. The flow characteristics within each microfluidic channel show maximum fluid velocity of 4.3 m/s (Re = 953) with a calculated convection coefficient of 1.7 x 10(4) W/m(2)K (Nu = 5.36). The CPV/T module and cooling system performance was validated during week-long outdoor tests under varying solar conditions up to 250 suns using a 2.7 m(2) parabolic dish collector mounted to a two-axis tracking system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据