4.7 Article

Human Embryonic Stem Cell-Derived Cardiovascular Progenitors Repair Infarcted Hearts Through Modulation of Macrophages via Activation of Signal Transducer and Activator of Transcription 6

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 31, 期 5, 页码 369-386

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2018.7688

关键词

human cardiovascular progenitor cells; myocardial infarction; inflammation; macrophages; STAT6

资金

  1. National Key R&D Program of China [2017YFA 0103700, 2016YFC1301204]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA16010201]
  3. National Natural Science Foundation of China [81520108004, 81470422]
  4. National Institute of Health [HL136025-01A1]

向作者/读者索取更多资源

Aims: Human embryonic stem cell derived-cardiovascular progenitor cells (hESC-CVPCs) are a promising cell source for cardiac repair, while the underlying mechanisms need to be elucidated. We recently observed cardioprotective effects of human pluripotent stem cell (hPSC)-CVPCs in infarcted nonhuman primates, but their effects on inflammation during early phase of myocardial infarction (MI) and the contribution of such effect to the cardioprotection are unclear. Results: Injection of hESC-CVPCs into acutely infarcted myocardium significantly ameliorated the functional worsening and scar formation, concomitantly with reduced inflammatory reactions and cardiomyocyte apoptosis as well as increased vascularization. Moreover, hESC-CVPCs modulated cardiac macrophages toward a reparative phenotype in the infarcted hearts, and such modulation was further confirmed in vitro using human cardiovascular progenitor cell (hCVPC)-conditioned medium (hCVPC-CdM) and highly contained interleukin (IL)-4/IL-13. Furthermore, signal transducer and activator of transcription 6 (STAT6) was activated in hCVPC-CdM- and IL-4/IL-13-treated macrophages in vitro and in hESC-CVPC-implanted MI hearts, resulting in the polarization of macrophages toward a reparative phenotype in the post-MI hearts. However, hESC-CVPC-mediated modulation on macrophages and cardioprotection were abolished in STAT6-deficient MI mice. Innovation: This is the first report about the immunoregulatory role played by hESC-CVPCs in the macrophage polarization in the infarcted hearts, its importance for the infarct repair, and the underlying signaling pathway. The findings provide new insight into the mechanism of microenvironmental regulation of stem cell-based therapy during acute MI. Conclusions: Implantion of hESC-CVPCs during the early phase of MI promotes infarct repair via the modulation of macrophage polarization through secreted cytokine-mediated STAT6 activation. The findings suggest a therapeutic potential by modulating macrophage polarization during acute phase of MI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据