4.7 Review Book Chapter

Thermomorphogenesis

期刊

ANNUAL REVIEW OF PLANT BIOLOGY, VOL 70
卷 70, 期 -, 页码 321-346

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev-arplant-050718-095919

关键词

phytochrome B; PIF4; ELF3; COP1; chromatin remodeling; auxin

向作者/读者索取更多资源

When exposed to warmer, nonstressful average temperatures, some plant organs grow and develop at a faster rate without affecting their final dimensions. Other plant organs show specific changes in morphology or development in a response termed thermomorphogenesis. Selected coding and noncoding RNA, chromatin features, alternative splicing variants, and signaling proteins change their abundance, localization, and/or intrinsic activity to mediate thermomorphogenesis. Temperature, light, and circadian clock cues are integrated to impinge on the level or signaling of hormones such as auxin, brassinosteroids, and gibberellins. The light receptor phytochrome B (phyB) is a temperature sensor, and the phyBPHYTOCHROME-INTERACTING FACTOR 4 (PIF4)-auxin module is only one thread in a complex network that governs temperature sensitivity. Thermomorphogenesis offers an avenue to search for climate-smart plants to sustain crop and pasture productivity in the context of global climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据